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ABSTRACT

The amplitude of vibration of a member at resonance, as
defined by its resonance amplification factor, is analyzed in
relationship to the damping properties of materials. Data are
presented on damping energy to indicate the effect of stress
magnitude, stress history and temperature. Based on the mathe-
matical relationship found to exist between damping and stress
magnitude the resonance amplification factors are determined
for a variety of direct stress members and beams. It is shown
that the amplification in vibration caused by resonance may be
considered to be the product of three basic factors: (a) the
mathematical factor, (b) the cross-sectional shape factor, and
(c) the longitudinal stress-distribution factor. The first of
these factors may be calculated from the damping and dynamic
modulus properties of the material-and the last two from the
shape and loading characteristics of the member. Diagrams are
presented to show these basic factors as functions of the damp-
ing exponent and other variables for members commonly encount-
ered in engineering practice. Experimental' data are presented
to confirm the equations, derived for resonance amplification
factors of members having various shapes and stress distribution.

PUBLICATION REVIEW

This report.has been reviewed and is approved.

FOR THE COMMANDING GENERAL:

.M. E. SORTE
Colonel, USAF
Chief, Materials Laboratory
Directorate of Research

WADC TR 52-320 iii



TABLE OF CONTENTS

INTRODUCTION . .. .. . . . . .. . . . . . • • 1

VARIABLES WHICH AFFECT MAGNITUDE OF DAMPING ENERGY IN
MATERIALS AND PARS* .o. . . . . .* . ... .. *...**.. . . 1

MATHELATICAL RELATIONSHIP BETWEEN DAMPING AND STRESS MAGNITUDE . .... 2

RESONANCE AMPLIFICATION FACTOR UNDER UNIFORM DIRECT STRES . . . . . . . 3

RESONANCE AMPLIFICATION FACTOR UNDER NONUNIFORM DIRECT STRESS. . . . . . 3

RESONANCE AMPLIFICATION FACTOR UNDER BENDING STRESS. o . . . ... . .. 5

EXPRIMENTAL VERIFICATION FOR A -E(3UATIONS . . . . . . ........ . 8

GENERAL OBSERVATIONS, SUMMARY, AND CONCLUSIONS . . . . . . . . . . 8

BIBLIOGRAPHY . . . . .. . .. .. . . . . .. .. . . .. .. . . . .. 9

LIST OF TABLES

TABLE I SUMMARY OF VALUES FOR RESONANCE AMPLIFICATION-
FACTOR Ar UNDER DIRECT STRESS.. ........... . .

TABLE II SUMMARY OF VALUES FOR RESONANCE AMPLIFICATION-
FACTOR Ar FOR BTMS. o .. .. ............ 6

TABLE III COMPARISON OF THEORETICAL AND WERIMI4WTAL VALUES FOR FACTOR Ar. 9

LIST OF ILLUSTRATIONS

FIG. 1 D-S-N-A DIAGRAM FOR ALLOY S,.ri6 INDICATING EFFECT OF STRESS
MAGNITUE AND STRESS HISTORY ON DAMPING ENERGY .... ... . 2

FIG. 2 LONGITUDINAL STRESS-DISTRIBUTION FACTOR K FOR VARIOUS COMMON
TYPES OF MEMBERS AND LOADINGS AS A FUNCTI 8 N OF DAMPING
EKPONENT n . . . . . . . .. . . .... . . . . . . . 7

FIG. 3 CROSS-SECTIONAL SHAPE FACTOR K FOR VARIOUS COMMON SECTIONS
AS A FUNCTION OF DAMPING EXPONT n .. ............ 8

WADC TR 52-320 iv



Effect of Damping Constants and Stress
Distribution on the Resonance Response

of Members
By B. J. LAZAN,1 MINNEAPOLIS, MINN.

INTRODUCTION

EAR-resonance vibration is generally considered to be a slippage and other structural or joint factors, and (c) aerody-
IN common cause for fatigue and other types of service fail- namic effects. In general, there is very little data on the relative

ures in many and diverse fields of engineering. Even if magnitude and importance of each of these three absorbers of'
actual failure can be avoided, the rough and noisy operation damping energy. It is likely that in many applications the
associated with the near-resonance condition frequently necessi- primary absorber of damping energy is the structure or joint
tates correction. Current trends toward higher speeds and de- factor and the contributions offered by the material damping are
creased factor of safety have increased the importance of reso- insignificant. However, there is little doubt that to generalize
nance vibration as a factor in design. this statement, which is sometimes done, is highly misleading.

Considerable work has been done on the fatigue and other In many applications subjected to'resonance vibrations it is
properties of materials which define their ability to withstand difficult to include significant structural damping and one must
cyclic stress produced by resonance or other vibration condi- rely on material damping. Even where significant structural
tions. However, relatively little has been done on the analysis and aerodynamic damping may be present it is shown by recent
of the properties of materials and other factors which govern the work (5) that material damping may still be sufficiently large to
amplification in vibration that is caused by the near-resonance be highly significant as a limiter of resonance vibrations.
condition. Hence this paper is concerned with an analysis of, Since this paper is concerned primarily with the dynamic
factors which govern the relationship of the external force which properties of materials, structural and aerodynamic damping
excites a vibration (hereafter called the exciting force) to the shall not be discussed further and only the material damp-
internal force excited in the member at resonance (hereafter ing factor will be analyzed in detail.
called the resonance excited force). The ratio of excited to ex- With this as background let us now discuss, as an indication
citing force shall be called (1)2 the resonance amplification factor of the variables which affect the magnitude of damping in mate-
A,, in this paper. rials, the dynamic properties of one particular material. For

The general nature of the viscous damped resonance curve is this discussion, data on the temperature-resistant material S-816
well known (2) and will not be discussed here. Although the in- at three temperatures will be presented so as to illustrate a va-
ternal hysteresis damping of a material is fundamentally differ- riety of trends and patterns of significance in resonance-vibration
ent in nature from viscoUs damping (3), and the resonance curves studies.
may be quite unsymmetrical (4), the resonance amplification fac- For brevity, the recently developed damping, elasticity, and
tor nevertheless provides a convenient measure of the severity of fatigue testing machines (3, 6) used to procure the data on S-816
the resonant condition. Consequently, this factor shall be used will not be described in this paper. Also, for brevity, diagrams
in this paper as a basis for analysis, showing the variation in damping energy absorbed by the mate-

VARIABLES WHICH AFFECT MAGNITUDE OF DAMPING ENERGY IN rial at various stress magnitudes as a function of a number of
MATERIALS AND PARTS cycles of fatigue stress (5) are omitted. However, in order to

establish mathematical relationships for later analysis, dampingThe energy absorption by an actual part, or its damping, may energy is plotted as a function of stress magnitude in Fig. 1, the
be due to several factors, among which are: (a) The inelastic be- different curves indicating the relationship for different stress
havior of the material as indicated by its damping capacity, (b) histories and temperatures. The significance of the right-hand

I Professor of Materials Engineering, University of Minnesota. 3 Numbers in parentheses refer to the Bibliography at the end of
Mom. ASME. the paper.

"The work reported in this paper was performed as part of a proj-
ect sponsored by the U. S. Air Force.*
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FIG. I D-8-N-At DIAGRAM FOR ALLOY S-816 INDICATING EFFECT OF I'rREBS MAGNITUDE
AND STRESS HISTORY ON DAMPING ENERGY

ordinate of this figure will be discussed later. The series of curves relationships between damping and stress magnitude, stre.s
shown at each temperature (solid lines represent room tempera- history, and temperature. As indicated previously, stress his-
ture, long dash 900 F, and short dash 1600 F) are identified with tory affects different materials in pronouncedly different manners.
the numbers 2, 3, 4, 5, and 6 to indicate the damping values after It is therefore impossible to generalize stress-history effects
101, 10', 10', 10', and 10' cycles of stress. The stress level at this time and express such effects mathematically. It is also
during the imposition of the stress history was the same as during impossible to generalize temperature effects at this time. How-
the damping measurement. The flags enclosing the letters F.S. ever, there are sufficient data (7, 8, 5) to indicate that for many
indicate the fatigue strengths of the material, materials the effect of stress magnitude (at constant tempera-

Due to space limitations, data for 8-816 only are presented ture and stress history) may be expressed by the equation
in this paper. It should be pointed out, however, that the damp-
ing values do not always decrease with an increase in number of D == J 8".................... [1]

cycles at room temperature as shown in Fig. 1. Many different where
patterns of behavior have been observed; for example, the D - specific damping energy, in-lb/cu in/cycle
damping of such powdered metals increases continuously with 8~ - stress, psi
an increase in the number of cycles; 403 stainless displays an J, n = const
initial decrease followed by an increase to a peak after which the
values decrease if the specimen does not previously fracture. Referring to Fig. 1, it may be seen that the log D versus log S
The data for some metals show damping values that decrease to is reasonably straight with slopes ranging from 2 to 8. Thus
a minimum, followed by a steady increase to fracture; other for 8-816, exponent n varies between 2 and 8 depending on stress
materials display practically no change in damping with number history, magnitude, and temperature.
of cycles; and Inconel X has high initial dampingl[ollowed by a In some of the earlier work (4, 8) exponent'n was found to be
period of practically no change, after which the damping in- approximately 3 for several materials at room temperature.
creases sharply preceding failure. The general trends for a given However, most of the materials now under study at the Univer-
material may be the same at elevated temperature as at room sity of Minnesota display exvponents a which generally are greater
temperature or they may be reversed, as in the case of 8-816 at than 3, particularly if various stress histories are included. An
room temperature and 1600 F. In most cases studied to date, T

however, the plot of log damping versus log stress (at constant expnen str ass lrea.0hsbe bere o n aeila
stress history and constant temperature) may be represented hg te
by reasonably straight lines. In future work more careful analyses will be undertaken of

stress history and temperature effects. For a given material
MATHEMATICAL RELATIONSHIP BETWISEN DAMPING AND STRESS it may be possible to handle these variables mathematically by

MAGNITUDE considering J and n as functions of stress history and tempera-

It is desirable at this point to determine the mathematical ture, rather than as constants as assumed in the foregoing.

wAU T 52-320 2



RESONANCE AMPLIFICATION FACTOR UNDER UNIFORM DIRECT sented previously, this section is concerned with an analysis of
STRESS the resonance amplification factor A, under nonuniform direct

So far basic data only have been presented on the damping stress. Bending members are analyzed in the next section. Other

energy. Now what does such data mean in terms of vibration types of members, such as those subjected to torsional stress, are

amplification of actual parts at resonance? not included in this paper for reasons of brevity, but may be an-

The effect of damping energy on the resonant behavior of a part alyzed in a similar manner.

may be specified in terms of the resonance amplification factor Analyses of members under resonant vibrations have been made

A,, as briefly discussed previously. This factor is the ratio of the in the past (9, 8, 1) to indicate that fatigue strength is not the

force which is excited during resonance vibration to the force sole criterion for indicating resonance durability. However, an

exciting the vibration. Thus A, is a measure of the severity of a attempt is made in this section to undertake a more thorough

resonant condition. For most applications in which linearity may treatment of the important variables and to generalize the

be assumed with reasonable accuracy this factor generally equations expressing the resonance amplification factor of mem-
may be computed (1) from the equation: bers. This type of analysis is also given in reference (10) pub-

lished after the completion of this paper.
A, = 27rW 0 /DLb .................... [2] The general case of direct stress vibration covered in this sec-

where tion considers the inertia forces produced by and within the vi-

Wo = elastic energy in member at macXimum stress, in-lb brating member. The force on a section of a member with in-

Do = total damping.energy in in-lb/cycle, VD ternal inertia forces will be, of course, a function of the longitu-

V = volume of material at stress dinal location of the section. Although the member may have
variable cross section as shown in the diagram in Table 1, it is

T h erefore, for th e sp ecial case of d irect u n iform stress for w h ich assu m ede th ats thee stressa ats ao given cross isection nis aunifor m ly is
assumed that the stress at a given cross section is uniformly dig-

the elastic energy Ws ,= VAS/2Ed tributed (although the total force on the section and the resultant

A, = 7rS2/Ed D = 7r/EJS"-2 ............. [3] stress may vary along the length of the member).
As indicated in Equation [2] the resonance amplification fac-

where Ed = dynamic modulus of elasticity (5), psi. tor A, for a member generally may be computed from the equa-
If the modulus of elasticity Ed is assumed to be reasonably tion A, = 27r Wo/Do.

constant, then A, is a function of the variablei S and D only, and Referring to the figure and symbol definitions in Table 1 the
for this simplified case of direct uniform stress only, a grid of lines total elastic energy
may be drawn in Fig. 1 as shown (see right-hand ordinate) to adf5 2

indicate the values of A,. However, as shown in a previous pub- Wo. = WdWs W= dV.= . -- A dx ..... [4]
lication (5) the modulus of elasticity does not remain constant. J 2 Ed

but varies between 21 and 34 X 106 psi, depending on tempera- where W. is the unit elastic energy at any location and dV is a
ture, stress magnitude, and stress history. Therefore the small differential volume having thickness dx.
right-hand scale in Fig. 3 includes provisions for determining A, As indicated (5), some materials display sufficiently large varia-
for various values of Ed as indicated at the lower end of this scale. tion in Ed to necessitate considering this modulus a function of

The wide range of A, values observed for S-816, as revealed stress level and stress history. However, for most materials
by Fig. 1, is of considerable engineering significance. Depend- and stress ranges, E d may be assumed to be a constant for most

ing upon stress magnitude and stress history, A, under direct eng~ineering calculations. Therefore Ed may be moved from
uniform stress may be insignificantly small or as large as 150. within theointegral sign as indicated
At 900 F, for example, stress history alone may increase A, to 1

over 100 times its virgin value. It is therefore apparent that the . f a= S2 A&x ............. [51

specification of A, for a given material and its comparison with 
2 EdJ 0

other materials cannot be done in a simple manner, since two Again, referring to the figure and symbols in Table 1, the total

variables other than material and temperature are involved, damping energy
It is desirable to review for future reference the relationship f

between damping exponent n and change in A, under increasing D J = dDo = Dx dV = JJ 0 .- A, dx ....... [61

stress. As indicated previously, if n = 2 then A, is independent
of stress magnitude since both elastic and damping energy in- Combining Equations [21, [5], and [6]

crease as the square of stress. If, however, n is larger than 2, _Qwhich is the usual case, the damping. energy increases moreo S' A.2"4 dx fO t•) A. dx

rapidly with stress than does the elastic energy resulting in a A, = - ___ ... 17]
A, which decreases with increasing stress. These observations EdJI Ad Ed J S,,

2 A dx
will be amplified in the analysis of cross-section shape and longi- fo

tudinal stress-distribution effects in later sections. In the foregoing equation, S,& is the stress at the section of

RESONANCE AMPLIFICATION FACTOR UNDER NONUNIFORM maximum stress, as defined in Table 1.
DIRECT STRESS For convenience in analysis and interpretation, it is desirable

All discussion to this point has been concerned primarily with to define the following factors (justification for these definitions

the basic damping, elasticity, and fatigue properties of mate- will appear later)
rials and the interpretation of these properties in terms of be- Material factor, K. - EJS. ........... [8]
havior of a resonant member under uniform direct stress only. EaJS) -
In practice this rather desirable state of uniforni stress is, of' A.S d
course, quite rare. Generally speaking, critical members are LongittidinalJ 0 ks! A, dx
almost always stressed nonuniformly, in which case the equation stress-distribution factor, K, = .......... [91

A, = ir S2/Ed D does not hold. Therefore, in the interest of pro-f A. dx
viding wider engineering applicability for the type of data pre- o &

WADO TR 52-320 3



TABLE 1; -SUMMARY OF VALUES FOR RESONANCE AMPLIFICATION FACTOR A, UNDER DIRECT STRESS
A,- Km.K.K$, WHERE Km:'?T/EdJ-Sn-

2
Kc1, AND K5 GIVEN BELOW IN SEVERAL CASES

LONGITUDINAL SHAPE AND STRESS VALUES OF K DEFINITION OF SYMBOLS
DISTRIBUTION IN MEMBER s

I GENERAL' CASE OF DIRECT STRESS FOR EITHER (5x/S,) Axdx RESONANCE EXCITING
(I) CONTINUOUS MEMBERS OR-FORCE Po
(2) MEMBERS WITH DISCONTINUITIES. n FC

CONSIDERING INTERNAL INERTIA FORCES. J (Sx /Sm) Adx EXCITED FORCE AT

SECTION A. OF MAX.

TA CONTINUOUS MEMBERS HAVING CONSTANT S S
CROSS-SECTIONAL AREA. Ad STRESS S m PAr

14 GENERAL, S $%Pm/A. IF INTERNAL

INERTIA FORCES ARE SIGNIFICANT J (S /S-lPdx

ZAI INTERNAL INERTIA FORCES NEGLIGIBLE

S z P.m/Am =Sm Kr I Pm ArSm
SECTION OF

JA2 INTERNAL INERTIA FORCES SUCH THAT: MAX. STRESSSS

S, = (K/) (n+)/3

1A3 INTERNAL INERTIA FORCES SUCH THAT P _
(mn+l)/(2m+I) Sx

_ I \

1A4 INTERNAL INERTIA FORCES SUCH THAT: 17/
2  REF.

Sx = Sm ,in(7Tx/2a) 
i/4 o inn0dS

(LONG. VIB. IN CANTILEVER ROD) ±P
-. FORCE ON REFERENCE SECTION

1B CONTINUOUS MEMBERS HAVING VARIABLE AREA USE EQUATION I

IF INTERNAL INERTIA FORCES
IBI INTERNAL INERTIA FORCES NEGLIGIBLE A NE GLIG E :

A zx ARE NEGLIGIBLE/

M_ THEN P= PntOO -ll

JA, dx IF EXTERNAL INERTIA FORCES

ARE NEGLIGIBLE:
IBIo ROD HAVING TAPER "3" (n-2) log s THEN P= P0Ax = Am I +(x.Ja)(s-Ii1

L i (Il 5 'n)

1B2 INTERNAL INERTIA FORCES SUCH THAT:

S = Sm(K/o),Smsin (7Tx/2o), ETC. USE EQUATION I

IC DISCONTINUOUS MEMBER HAVING CONSTANT f 2 +. 0 2+ 0I 2

CROSS-SECTION BETWEEN DISCONTINUITIES. A0I (Sa/Sn) di+A (S,/S ) di +

Al al A2 a2 A01 (S,/S)n d.+A +a,(S, /Sm)n dx + ---Iof a~o

ICI INTERNAL FORCES NEGLIGIBLE (oj/az) + (A,+A 2 ) FOR TWO SECTION MEMBER

Sx =Pm /A (,/2) + (A, A2 )'-1 (ONE DISCONTINUITY)Sx P /x (./ 2) +(A+ 2)Am= A, am ze a,

IC2 INT. INERTIA FORCES NOT NEGLIGIBLE. USE EQUATION 1C.f DI DISCONTINUOUS MEMBERS WITH VARIABLE USE EQUATION I.

SECTION BETWEEN DISCONTINUITIES.

WADC TR 52-320



In accordance with these definitions, the resonance amplifica- where t(x) and t'(x) are functions of x which define the location of
tion factor for the general case of direct stress may be written as the fibers most distant from neutral axis of the beam.

A, =K,, K,.................. Combining Equations [2], [11], and [121

The material factor K. is, of course, independent of -cross- f S, 2 
-_ dx

sectional shape and stress distribution of the member; it depends A, 27r J0
only on the properties of the material Ed, J, and n, and the oper- 2 Ed J fa o t(X)

ating stress S,.. Referring to Equation [3], it may be seen that YJ Z dy tn dx

the material factor is identical to the resonance amplification fac- . ly=-t'()

tor A, under direct uniform stress. This relationship will he fa(S__ _ _I_ dx
discussed again in connection with bending members. - --

The longitudinal stress distribution factor K,, separated from F o
K. as shown in Equations [7], [9], and [101, is a function of mem- Ed J -2 faf t(x• y" Z dy dx
ber shape (as specified by A.), longitudinal stress distribution S., J 7 =OLJ J =--t'(/
member length a, and damping exponent n, and it is independent ................ [13]
of damping constant J.

In the analysis of bending members in a later section it will be Inspecting Equation [13], it is apparent that the first factor
observed that A, also may be separated into material and longi- lr/Ed J S,."- is the material factor K. discussed previously.

tudinal stress-distribution factors K_ and K,, with an additional It will be shown that, in general, the remaining part of this equa-

K,-factor required to account for cross-sectional stress distribu- tion may be considered to be the product of two other factors:
tion. In the interest of generalizing, this K,-factor is included (a) The longitudinal stress distribution factor K,, as discussed

in the summary for direct stress members given in Table 1, K, previously, and (b) the cross-sectional shape factor K, to be dis-

being equal to 1 for this case since a uniform stress distribution cussed later.

at a given cross section is assumed. In the foregoing general case these two factors cannot be sepa-

Referring to Table 1, the first row lists the general case of direct rated conveniently and only their product (KK,) is specified..

stress and subsequent rows cover various special direct-stress However, in most special cases discussed below, K, and K, can

cases encountered in engineering practice. For each of the gen- be separated.

eral, semigeneral, and special cases listed, the values of K, are Consider now the special case of beams having constant cross-

given in the second column. For conciseness, the derivations for sectional moment of inertia I and neutral-axis distance I and t
the K,-equations listed in this table are not shown in this paper. within the length of the beam under consideration. Under these

In general, these equations are rather simple mathematical reduc- conditions the integral

tions of the equation for general case I with appropriate substitu- t(x)
tions for S. and A.. The trends revealed by these K,-equa- J 1ft yi" Z dy1

tions will be discussed later, reduces to

RESONANCE AMPLIFICATION FACTOR UNDER BENDING STRESS ftty* Z dy

An analysis of the resonance amplification factor of beams, a
structural component in which resonant vibrations are often of which is not a function of x and may therefore be removed trom
critical importance, is given in the following, within the fa dx integral. Thus Equation [13] reduces to

Referring to the figures in Table 2, the elastic and damping Jx=0
energy of a beam of general shape may be expressed as indicated f a[ \
in the following J _)2 dx

2a M,2dx A, -= t _',. .. . [ 14]Total elastic energy, Wo = 1/2 M, dO = d Ed J S.x
2J 0  Ed I. EdSifa( ~ ~ Zd

and assuming Ed is constant as discussed previously Comparing Equation [141 with direct-stress Equation [7]

1 aS2 I, dx ... (with A, = const), it may be seen that the material factor
Wo =i 2-Eajo - [...........[11] K

Total damping energy = Do = fD d, = ffDZ dy d~x and the longitudinal stress-distribution factor

but f o _ 2d

D - JS' and = St fa (S)K • = \"

where S = stress at any point, S.= maximum stress (at outer _ dx
fibers) at any position x, and t. = maximum distance from neu-
tral axis to outer fibers at any position x. are identical to those defined in Equations [8] and [9]. All that

Thus, since t. and S. are not functions of y remains to be accounted for in Equation [14] is therefore the last

factor, which may be defined as follows
Do = J S." Z dy dx

ra E Cross-sectional shape factor K, = t 15-= .L f__t'(X) dy tx ft

0=-( A -A"-x .... [12] 52-32

wAD !R 52-32o 5



TABLE II:- SUMMARY OF VALUES FOR RESONANCE AMPLIFICATION FACTOR Ar FOR BEAMS

Af = Km, Kc. Ks' WHERE Km=z"r/EdJsmn-2, AND K AND Ks ARE GIVEN BELOW FOR SEVERAL CASES

1 i--SECTION OF
LONGITUDINAL SHAPE AND VALUES FOR K K OR K K MAX

STRESS DISTRIBUTION IS C "S, in S

a GENERAL CASE OF BENDING STRESS 2(I/

FOR EITHER (SI/Sm) (Ii/tx) dx - -
(1) CONTINUOUS BEAMS OR o
(2) BEAMS WITH DISCONT. WITH KC'K aS

SIGNIFICANT INTERNAL INERTIA n (Sx /sm)n
FORCES CONSIDERED. JxOjiy z l(x y z--n dx - ...-

SCONTINUOUS BEAM HAVING aM 2
CONSTANT CROSS-SECTION. n-2 (Sx/Sr)2 dx d
rx = I KC . i KS. a --

III = t n; y Z dy IS (S /S .. Pdx d "' '

ft.fodx Tj zif
SPECIAL CROSS-SECTIONAL RECTANGLE - CIRCLE - DIAMOND -•

SHAPE CONSIERED0.196 (n+21
Kc: 0 33(tn+1) Kc x Kc:OOB3 ln+I)(T +2)

17/2
!VALUES OF KS-K . sin nePd

IIAI CONSTANT MOMENT 0. 196 In +2)

Sx Sin S KS -1 O.331(nf + l)-1/2 sin n dG 0. 083(n1ln+ I nln+2)"fo
- AZ ; VARIABLE MOM.ENT O. O25(nIl)ln+2)

SUCH THAT 7rr02 2
SK (5 Walsm 0.111 n. 4. )2 10 sil node] O02(n+J)(n 2)

OKS . (n+U)/3

rl A3 VARIABLE MOMENT

HAVING HA 0.C33ONnS (CnO S) 0. 196(ran I+1) (nS2) 0.083( n,+)_n+2)(_n _Sx. NGm

012m0 I a(i - +[]l 0r2 (2 + 1) d

KS (m-•) / (2mre) ( +I[r2sinne de m*I

ZA41 C ARIABLE MOMENT

SUCH THAT 0.26(n++) 0. 154.(n + 2) 9 0.065(n+ ) (n+ 2)
3x" .Smsin (7rx/2°)01 j'Eosin"O de [•0r/2 gin n e d I] 0Ir/2 sinne de

KS V•/4J sin ned 0de

02)' 1-N I U S B A S22 2 2

HAVING CONSTANT CROSS- tL~ a S! 1! . ! 1
SEC TION MEMBETWEEN -I+ - + L51] fLJL 1 --

L" II • ry 1 0-__

I+tI

"K "2 1 i yE13l SIf 2 e5+T1J a3l-T W O S E CT IO N M E M BE R 0.33 (n +÷I) -+ -I )I 2

I SILAR TO 2) 2 02

Aa 3On-2 a, 52-201, al 1 sn° ooe +[ 12K s + +-a + a
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Inspection of Equation [15] will show that the name assigned ITYPE OF MEMBER AND LOADING

to this factor is descriptive of its nature. -00 -

Therefore it appears to be possible to define the resonance 80 ON C I SNUOUS MEMBERS CASE

amplification factor of beam by the equation SHOWN BY SOLID LINES. I1CI

t60 DISCONTINUOUS MEMBERS IP'.OI

A, = K. K, Ký.-. ................ [161 -- 50"SHOWN BY BROKEN LINES. B
SCASE IC1. / 'C I

In all cases K, appears as a separate factor. Although for the w4O -4 - -. . CASE -n C I.
0

case of beams of uniform cross section and other-special cases it o p2 0 1/a 2 - q=AI /A 2 S=4

may be possible to separate the K, and K-factors as shown, in - T 0 -I IBI

the most general case only the product K, K, can be specified. "_ 0 S - 2
Table 2 is a summary of values for the resonance amplification z 2 0 

-'- - - __

factor A, for various general and special types of beams en- 0 I,'.OI

countered in engineering practice. The arrangement of this • -

table is similar to that of Table 1 and is self-explanatory. It M T/ A28, IA2
should be noted that three cross-sectional shapes frequently en- C 10 -

countered in engineering practice (the rectangle or square, circle, SX= S(X/a)

and diamond) are analyzed merely to indicate trends to be dis- 0-

cussed later. Other shapes can, of course, also be analyzed by c I Xn A

the same methods. 5(n/ -5. "

From Table 2 it may be noted that the equation for a vibrating C 4
beam (case lIA2) of rectangular cross section is U/] - -

ar in +i I2 // VBR ATINfG
A,/ CAN TI LEVER

1 ROD WITH

If this equation is used to compute the allowable force P0 at s .S 'Sit 2o

resonance and if a value of 3 is substituted fork, then the resultant r

equation is in exact agreement with Marin's Equation [14] in Z CASE 1AIrefrene ().0 I]UNIFORM
o DIRECT

.. Referring to Equation [14] of this paper, it may be seen that STRESS

both the K, and K,-factors are functions of damping exponent 2 3 4 5 6 8 10 20 30

n. Since this exponent is widely different for different materials, D A M PI N G E X PO N EN T n --'

a range from 2 to 30 having been observed to date; it is desirable FIG. 2 LONGITUDINAL STRESS-DISTRIBUTION FACTOR K. FOR VARI-

to diagram these factors as a function of n as shown in Figs. 2 and oUS COMMON TYPES OF MEMBERS AND LOADINGS AS A FUNCTION OF

3. Thesediagrams also reveal trends which provide a basis for DAMPING ExPoEwNr n

discussing the interpretation of damping data in terms of reson-
ance amplification factor as used in engineering design. resonance amplification factor A, of the unnotehed member, if

Fig. 2 diagrams the longitudinal stress-distribution factor K,, otherfactors remain constant.

as a function of damping exponent n for various common shapes To illustrate the effect 'of damping exponent n on the cross-
of members and types of loading. Members without discon- sectional shape factor K,, three common sections were analyzed
tinuities are shown in solid lines and members with one dis- and diagrammed as shown in Fig. 3. The equations used to plot
continuity (two section members) are shown in broken lines, the characteristics of the diamond, circle, and rectangle are given

For all the cases referred to in Fig. 2, factor K, equals 1 at n = in Table 2. The broken lines indicate the general trend for a

2, and, except for uniform direct stress, increases with increasing modified diamond shape (with sharp upper and lower edges) and

values of n. The rate of increase in K, with n is greatly depend- an I-beam. Since the exact shape of these sections governs the
ent on the type of member and loading, exact locations of the corresponding curves, these, curves are

For example, for a freely vibrating cantilever member of con- qualitative indications only of the general trends.
stant cross section under either tension or bending stress (stress It is significant to note from the curves that merely changing

distribution assumed to be S, = S,; sin[7rx/2a] as indicated for the cross-sectional shape of a beam from a diamond to an I-see-
cases IA4 and IIA4) K, increases from I to only 3.5 as damping tion (all other factors remaining constant) may decrease its
exponent n increases from 1 to 30. As a second example, K, for resonance amplification factor very significantly, as much as 20

a tapered tension member (case 1Bla) having a taper s of 4 dis- times under certain conditions. It is sometimes possible to make
plays the much larger increase from 1 to 40 in the same range of such shapes in cross-sectional shape in vacuum-tube components,
n-values, structural beams, and other parts to reduce resonance amplifica-

In the case of discontinuous members (broken lines), it is of tion vibrations and increase service life without affecting func-
course possible to have an infinite number of ratios of section tional behavior.
area, and so on, at the discontinuities. For simplicity, members Referring again to the five shapes diagrammed in Fig. 3, it is
with one discontinuity only are considered, and for further sim- apparent that the smaller the percentage volume at near peak

plification only a few ratios q of areas A, to A2 and only a few stress, the larger is the Kc-factor, particularly at large values of
ratios p of lengths a, to a 2 between discontinuities are included. damping exponent n. The physical reason for this mathematical

Small values of ratio p were selected to indicate the character- observation may be explained on the basis of the ratio of the
istics of members with notches and other stress-concentration elastic~energy to damping energy. In general, it may he stated
effects. For example, a member with a small notch (which al- that if either the (ross-sectional shape or longitudinal stress dis-
lows relatively low working stress in the rest of the member) can tribution are such as to cause a large percentage of the material to
attain K,-values as high as 80. This means that at the same be at stress low enough as to dissipate negligible damping energy,

nominal working stress a notched member may have 80 times the and yet at a stress high enough to store significant elastic
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reduction in fatigue stress at resonance may be sufficient to elimi-

I00 S nate service-failure difficulties in critically stressed members.

0 Kc FOR BEANS •. N.A. EXPERIMENTAL VERIFICATION FOR A,-EQUATIONS-

60 WITH DIAMOND order to procure at least partial experimental confirmation
5 NEUTRAL AXIS N.A. of the A, equations derived in the previous sections a series of

HORIZONTAL
40 AS SHOWN tests was undertaken with a newly developed resonance-vibra-

/ -tion testing machine described in reference (4). With this ma-
u3 - chine it is possible to excite resonant vibrations in various types

I of systems and at the same time maintain the desired excited force• CIRCLE

o0 - , - / by controlling the magnitude of the exciting force. Automatic
1 I /controls maintain (a) a state of resonance and (b) the desired ex-

- : : - / -- cited force, even under conditions of changing damping and dy-
IL dnamic stiffness in the system. The value of the resonance ampli-

-s 0 fication factor A, may then be computed from the ratio of the
/- / " RECT. OR excited force (indicated by an accelerometer output) to the ex-

- - - - - - SQUARE citing force (determined from a tachometer and a counter which
S6 - - - indicate unbalance in a revolving eccentric).

I// 5 Tests were undertaken in this machine to determine A, for a

-/ beam-type specimen made of alloy TP-2-B,3 this alloy being se-
0 4 N. A. lected because its large damping exponent n of 13 provides a more
P 3 - - - critical test of the theory than a material with a 9mall damping
Uw ANY exponent. In these tests, made at a stress of 80,000 psi and a

I n - - Nstress history of approximately 1000 cycles, three cross-sectional
O) SHAPE shapes were used, i.e., a square with the neutral axis parallel to onea: ,.. .,side, a circle, and a diamond shape (actually the same specimen-T STRESS as used for the square cross-section test, except that it was ori-

- -1---ented so that the netural axis was diagonally across two opposite
- - j [corners). The experimental A,-values so determined and the

2 34 5 6 8 theoretical A,-values calculated by means of the equations pre-
2 AM I 8 O 20 30 sented previously are indicated in Table 3.
DAMPING EXPONENT .--- It might appear from Table 3 that the check between the theo-

FIG. 3 CROSS-SECTIONAL SHAPE FACTOR K, FOR VARIOUS COMMON retical and experimental values of A, is rather poor. However,
SECTIONS AS A FUNCTION OF DAMPING EXPONENT n considering that in alloy TP-2-B (with a damping exponent n

of 13) a 3 per cent error in stress magnitude will result in a 29 per
energy, then relatively large A,-factor will result. This is so cent error in K,. and A,, and that the number of other variables
for diamond-shaped cross section (as compared to I-beams), for which affect damping (such as variability of stress history and

tapered members at constant force (as compared to constant sec- rest, cyclic stress frequency, machining stress, and others dis-

tion members), for cantilever beams (as eomp'ared to constant cussed in reference 3), the check between theory and experiment
moment beams), and for stepped or notched (discontinuous) Inem- is considered adequate.
bers (as compared to continuous members). In general, as much
volume as possible should be exposed to near peak stress if A, is to GENIRAL )BSERVATIONS,SUMMARY, AND CONCLUSIONS

be kept small. In many machines and structures, it is highly desirable, if not
An example of the method of using the three factors which gov- essential, that the amplitude of near-resonance vibration encoun-

ern the amplification in vibration caused by resonance is given in tered in service be reduced. In general, the most satisfactory
the following. The example considered is a cantilever beam of approach is, of course, to reduce the magnitude of the exciting

constant diamond cross-sectional shape'made of S-816, vibrated force or change its frequency so as to avoid the resonant condi-
at 900 F, and exposed to a maximum stress of 60,000 psi (virgin tions. However, this cannot always be accomplished, in which
material assumed). case it becomes necessary either to make the machine more vibra-

From Equation [16] tion-resistant or to increase the damping of the system in order
to reduceJhe magnitude of the rnear-resonance vibrations. Fre-

A, = Km K,* K, quently, the methods for increasing the fatigue and dynamic

From Fig. 1, K, = 19 for virgin material at 900 F, at 60,000 strength of a part are exhausted without a satisfactory solution,

psi and damping exponent n = 8 in which case one must resort to increasing damping.

From Fig. 2, K, = 1.7 for a vibrating cantilever beam (case Sometimes it is possible to increase the damping of a vibrating

IIA4) with a damping exponent of 8 system through more effective use of joint, aerodynamic, and

From Fig. 3, K, = 7.8 for a diamond (ross section of a mate- other damping not directly related to the material, shape, and

rial with a damping exponent of 8 stress distribution in the members. However, this too may be
quite difficult to accomplish, in which case it becomes necessary

A, = 19 + 1.7 X 718 = 252 to increase the damping of the actual ptirt. It is this last type of
damping which is the subject of this paper.

If this resonance amplification factor is too large for the appli- It was shown in this paper that the amplification A, in vibra-
cation under consideration, a change in cross section from dia- tion of a part at resonance is the product of three factors; (a) ma-
mond to I-section could be considered. The resultant reduction terial factor K., (b) longitudinal stress-distribution factor K,,
in K.-factor from 7.8 to 1.7 would result in a reduction in reso- -See reference (5) for details on this material, including data on its
nance amplification from 252 to 55. Needleoss to say, the resultant damping, elasticity, and fatigue properties.
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TABLE 3 COMPARISON OF THEORETICAL AND EXPERIMENTAL VALUES FOR FACTOR
Ar FOR TP-2-B AT A STRESS OF 80,000 PSI AND A STRESS HISTORY OF 1000 CYCLES

(D - 6.2 X 10-1 S"1: therefore, J = 6.2 X 10-33, and n = 13)
Experimental

-- Theoretically computed values Ar
Cross-sectional Km K, K, Ar from resonance

shape see Eq. [8) see Eq. [9]*a see Fig. 3 see Eq. [16] test
Square ........... 14 2.2 4.8 150 170
Circle ........... 14 2.2 9 280 340
Diamond ........ 14 2.2 18 550 950

a Tapered-beam specimens of the type used in rotating-beam damping work (see reference 3) to produce
uniform stress distribution longitudinally also were used in these resonance tests. However, in the reso-
nance tests the longitudinal stress distribution was not uniform. Therefore the K,-factor for these speci-
mens lies between 1 (for the case HAI having uniform longitudinal stress) and (n + 1)/3 = 4.7 (for case
IIA2 having cantilever-beam-type stress). For the beam used K, was computed to be very approximately
2.2.

and (c) cross-sectional shape factor K,. The critical relation- It is felt that the analyses and observations discussed in this
ships of these factors to damping exponent n and other variables paper should provide the design engineer with improved perspec-
were derived and analyzed. Methods of decreasing the resonance tive in dealing with problems involving resonant vibrations.
amplification factor, based on the equations derived, were sug-
gested and demonstrated. Experimental data were presented to
verify the theory.
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